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Key-lock mechanism in nematic colloidal dispersions
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We consider the interaction between two-dimensional nematic colloids and planar or sculpted walls. The
elastic interaction between colloidal disks and flat walls, with homeotropic boundary conditions, is always
repulsive. These repulsions may be turned into strong attractions at structured or sculpted walls, with
cavities that match closely the shape and size of the colloids. This key-lock mechanism is analyzed in
detail for colloidal disks and spherocylindrical cavities of various length to depth ratios, by minimizing the
Landau—-de Gennes free energy functional of the nematic orientational order parameter. We find that the
attractions occur only for walls with cavities within a small range of the colloidal size and a narrow range of
orientations with respect to the cavity’s symmetry axis.
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I. INTRODUCTION play between surface geometry and orientational order re-

In the last ten years, there has been continued interest fitired to understand the phenomenology of LCs on sub-
colloidal dispersions in nematics and other liquid crystallineStrates patterned on these length scales is however largely
phases(LCs) owing to their novel, complex behavigd].  unexplored. In this article we embark on a systematic inves-
The behavior of spherical isotropic particles in a nematictigation of the effects of geometry and orientational order on
matrix depends upofi) the elastic constants of the nematic, the interaction between colloids and solid surfaces. In par-
(i) the size of the particle, angii) the boundary conditions ticular, we investigate the interaction between 2D colloids
at the particle and at the container, including the anchoringnd hard surfaces, ranging from flat to structured on the col-
energy of the nematogenic molecules and possibly additionabidal scale. We study the interaction between one disk and
(generig surface tension effects. All of these contributionsflat as well as structured walls, using the method of images
are temperature dependent and their combination leads &nd numerical minimization the LdG free energy. For a
complex anisotropic long-ranged colloidal interactipps4].  single cavity, sculpted on a flat surface, we find that the flat
These were reported to lead to a variety of novel self-wall repulsion may be turned into a rather strong attraction,
organized colloidal structures, such as linear chdm§], as a result of the interplay between geometry and orienta-
periodic lattices[7], anisotropic clusterg8], and cellular tional order. This effect occurs at cavities with sizes in the
structures[9] that are stabilized, in general, by topological colloidal range resembling the so-calléey-lock mecha-
defects. nism.

More recently, two-dimensional2D) inverted nematic In Sec. Il, we review briefly the Landau—de Gennes
emulsions were also studied and similar behavior has beetheory and in Sec. lll we present the results for the interac-
found [10-14. In particular, Landau-de Genng&dG) tion between one disk and a flat wall. In Sec. IV we consider
theory predicts that the stable configuration for a colloidalthe interaction of colloidal disks with cavities sculpted on flat
disk, with strong homeotropic anchoring, is always a pair ofwalls. We investigate the effects of the size and shape of the
1/2 charge topological defecf45] and thus the long-range cavity and of the colloidal orientation with respect to the
interaction between 2D colloids is quadrupolar for any sizeccavity’s symmetry axis. Finally, in Sec. V we summarize our
particles[14]. results and make some concluding remarks.

The interactions between colloids and the nematic-
isotropic(NI) interface were also investigatéts,17. These
include specific contributions from the liquid crystal matrix II. LANDAU-DE GENNES FUNCTIONAL
due to distortion of the director field close to the particles
and/or the interface, and a generic contribution due to wet- In what follows we consider a two-dimensional nematic
ting and surface tension effects. At equilibrium, a strong disJiquid crystal. On average, the molecules are aligned along
tortion of the planar interfacial region was observed, with theone common direction described by the direatoand the
interface bending around to wrap the colloid. The effectivetensor order parameter is defined aQ,4(r)=Q(r)
colloid-interface interaction was found to be rather complexX[n,(r)ng(r)—38,5/2] [19]. In the situations to be investi-
and a simple scaling analysis for a flat interface was showgated, the distances over which significant variation®gf
to fail badly [17]. occur are much larger than molecular dimensions. Thus den-

At the same time technological advances allowed the consity variations are neglected. The free energy density is then
trolled fabrication of micropatterned and structured surfacesyritten in terms of invariants o and its derivatives and is
on the nanometer to the micrometer scdl&8]. The inter- known as the Landau—de Gennes free energy,
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We start by considering the interaction of a colloidal disk,

where we used the one elastic constant approximation. T¢' radiusa, with a flat wall. We assume strong homeotropic
denotes the trace operatidh,is the area of the 2D systerA boundary conditions at the wall and at the disk’s surface, and

and C are bulk constants, arid is the elastic constant. Sta- [@ke the far fieldn, perpendicular to the wall. The order

bility requires C>0. In the nematic phasé>0 and the parameter at the wall and at the disk’s surface is fixed and is
equilibrium orientational order parameter @,,=2A/C. equ:;l tof,QbU'k'h , hori N .

For simplicity, we consider strong homeotropferpendicu- The fixed homeotropic anchoring at the boundaries re-

lar) anchoring meaning that the order parameter at the waffuces th&long-range flat disk-wall interaction to the inter-
and disk boundary is fixed and equal®@,;. The colloid is action between two disks, studied in Rgf4]. The latter was

modeled as a hard disk, and all other colloidal interaction®Pt@ined using an electromagnetic analggf] establishing
(van der Waals, electrostatic, etare neglected. Thermal thal, atlarge separations, each disk is accompanied by a pair
fluctuations, also neglected within the Landau—-de Genne f defects and behaves as a quadrupole. This still applies to

description, are expected to be unimportant for the systema'€ flat wall system with the result that the long-range disk-

considered here: hard surfaces at temperatures well beloff2!l interaction is repulsive and decays B, whereR is
the NI transition temperature. the distance between the center of the disk and the wall.

We use finite elements with adaptive meshing, as deHfowever, at short range, nonlinear effects come into play,

scribed in Ref[13], to minimize the Landau-de Gennes free 21d the electromagnetic analogy is no longer valid. More-
energy functional. Indeed, the major difficulty in the numeri-©Ver, in that region the equilibrium disk-disk interaction
cal problem stems from the widely different length scales sefPontaneously breaks the flat wathirror) symmetry [14]

by the disk or the sculpted wall and the defects. A first tri-2nd thus itis no longer useful in this problem. In this regime,
angulation respecting th@redefinegl geometrical bound- W€ resorted to numerical solutions. _

aries is constructed. The tensor order paramétgy(r) is In Fig. 1 we plot the reduced interaction enefgyF, as
given at the vertices of this mesh and linearly interpolatech function of the distanc® F=F/K, whereK=2LQ, is
within each triangle. The free energy is then minimized usinghe Frank elastic constant, afg is the Landau—de Gennes
standard methods. The variation of the solution at each itergree energy of the system without colloid. As noted above,
tion is used to generate a new adapted mesh. In the far fielthe long-range interaction is always repulsive and we find
Q.p(r) varies slowly and the triangles are large. By contrastthat the repulsion increases as the colloid approaches the
close to the defects the tensor order parameter varies rapidiyall. This increased short-range repulsion is associated with
and the triangles are several orders of magnitude smaller. lthe strong distortion of the nematic matrix between (fitegt)
typical calculations convergence is obtained after two meskwall and the(curved disk, due to the competition between
adaptations, corresponding to final meshes with ddints,  the fixed anchoring conditions at the wall and disk surfaces.
spanning a region of 20< 20a, and minimal mesh sizes of The distortion of the nematic matrix extends from the wall
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. ) ) FIG. 3. Structured wall: geometry and notation.
FIG. 2. Defect distancey from the center of the diskcontinu-

ous ling and defects orientatiofé (dash-dotted ling with respect

o their orientation in isolated disks, as a functionFof tion of the separatiofiR/a for increasing values of the cavi-

ty’s radius. If the cavity is sufficiently narrowr/a<0.25

. . the colloid-wall interaction is very similar to the interaction
up to the line joining the defects and under these circumyyith the flat wall. As the radius of the cavity increases, an

stances the elastic free energy is minimized if the defectgraction with a well defined minimum eventually occurs.

move closer to the wall. As a result the pair of 1/2 defectsthe minimum is inside the cavity if the width is larger than
surrounding the disk are displaced with respect to #8im-  ha colloidal radiusr/a> 1.

metrica) equatorial position in the isolated disk. This effect  yowever. if we increase the radius of the cavity well be-
is |Ilustratgd in the |_nset of Fig. 1, e_xh|b|t|ng _order parameteryond the colloidal size, the attraction becomes very weak.
maps at different disk-wall separatiori, In Fig. 2, we plot  \ynen the radius of the cavity is much larger thanthe

the defects orientation with respect to their orientation in jnteraction between the disk and the structured wall ap-
isolated disks, as a function & (see inset for the notation proaches that of the flat wall.

In addition, the distance of the defects from the center of the The disk-wall attraction that occurs when the radius of the
disk, ry/a, decreases at small disk-wall separatidRsas the  cayity is of the order of the particle radius is easily under-
defects change their orientation. stood in terms of the nematic configurations of Fig. 5, where
we plot the nematic order parameter maps and the director
orientation, for a cavity withr/a=1.1 andd/a=0.01, and
IV. STRUCTURED WALL different colloidal separationB. The shape of the cavity is
The results of the preceding section indicate that a hocomplementary to that of the disk. The distortion due to the

meotropic disk is repelled by a hagdomeotropig wall since homeotropic gncho_ring at all _surfaces is clearly min?mized
the elastic deformation of the nematic matrix increases as th&hen the particle fills the cavity. In fact, as the colloid ap-
colloid approaches the wall. This situation may be inverted ifroaches the cavity, the two 1/2 defects move towards the
the director field at the wall resembles the director field clos¢©ners and merge with the distorted region of the nematic
to an isolated disk. In the following we explore this mecha-Matrix in the absence of the collo[dee Fig. &)]. Due to
nism and determine the conditions under which it is strong
enough to overcome the flat wall repulsion.

We consider a sculpted cavity on an otherwise flat wall, as
shown in Fig. 3. The cavity is spherocylindrical of radius
and half-length or depthl. The corners are replaced by an
arc of circle with radius/4, to avoid large variations in the
director field, in the absence of the colloid. Strong homeo-
tropic boundary conditions are set at the wall and at the
colloidal surface. The far field, is again perpendicular to S

'’ == rla=050
the wall. /_//' — rla=025

The image method can no longer be applied and analyti- 7
cal expressions for the long-range interaction between the ro
disk and the cavity are not available in this case. In addition, 0 \ , ! ,
the nonlinearities that come into play, as the colloid ap- 0 R% 4
proaches the cavity, are more complex. The free energy is ¢
minimized numerically as before, using finite elements with  F|G. 4. Reduced interaction energy as a function of the distance
adaptive meshin@13]. R of the center of the colloid to the midpoint of the cavity’s en-

We start by considering a very shallow cavity, willia  trance for several widthgr/a=0.25,0.50,0.75,1.00,1.25The
=0.01. In Fig. 4 we show the disk-wall interaction as a func-depth isd/a=0.01.
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the strong distortion of the nematic matrix at the corners 01:c FIG. 7. l"eft i_?terzciticinoegf rgylgsoasfgn;:tioon qtfhthe ds_epar;afﬂon
the isolated cavity, the tensor order parameter decreases i :e;fisrzt' icri\élr:cst(ionae_nér ’a's a’fuﬁcti’oﬁoofvme Sr;‘ ::;ﬁrm?
this region, even if we kee@=Qy fixed at the surface. _ " ght: - 9y . paré

. . ) ) . . several depthgd/a=0.01,1.00. The radius of the cavity is/a
Different surface interactions will lead to different director

fi fi but f imolicit trict the study t =3.0. The lines in bold correspond to the minimal energy configu-
configura |ons' u Or. §|mp ICity we restric € Stuay 10 rations. Thinner lines correspond to metastable solutions.
strong anchoring conditions.

_In Fig. 6 we plot the minimal interaction enerdymin  For cavities withr /a=3.0 the analysis revealed the existence
—-Fo (left) and the corresponding disk-wall separati®y)/a  of a secondmetastablg solution where the defects remain
(right) as a function of the radius of the cavitya. For small  attached to the colloid. This is illustrated in Fig.(fight)

r/a, the disk-wall interaction is repulsive, and the minimal where we plot the energy of both configurations for two dif-
free energy occurs when the colloidal particle is far from theferent cavitiesd/a=0.01 (full lines) andd/a=1.00 (dashed
wall, R—oo. The disk-wall interaction becomes attractive atlines). The lines in bold correspond to the minimal energy
finite Ryn/a (corresponding to a critical cavity radiug/a branches.
=0.4). Beyond this point, the minimal free energy decreases Whenr ~a, the disk-wall attraction is enhanced as the
rapidly and reaches its lowest value for a cavity witila  depthd increases. A similar effect occurs for wider cavities.
=1.1. The strongest disk-wall attraction occurs for this ge-However, as was pointed out before, the attraction becomes
ometry, and is illustrated in Fig. 5. weaker, and eventually turns into a repulsion as the wall
In the following we show that the disk-wall attraction, becomes flatter.
discussed for shallow cavities, may be enhanced by increas- The enhancement of the disk-wall attraction occurs only
ing the cavity deptld. In Fig. 7 we plot the reduced interac- for a limited range of depths. At a certain depth the nematic
tion energy as a function of the separati®ifor cavities with  configuration changes abruptly. In fact, due to the strong ho-
different depthsd. The cavity radius is/a=1.5 andr/a meotropic boundary conditions, there is a critical degth
=3.0, on the left and right of the figure, respectively. Increasbeyond which the stable nematic configuration of the empty
ing d reduces the equilibrium interaction energy by pulling cavity exhibits two topological defec{see inset of Fig. B
the disk deeper into the cavity. The nematic distortion is

decreased and the defects are further localized at the corners " T ' I i I
leading to a significant reduction in the elastic free energy. T 1
b ' 2 —— —
°
P00 : 1F .
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0(') ; ‘2 . ‘3 .10 : 'l ' é : ‘; FIG. 8. (Color onling Critical depthd. as a function of the
a ta radius of the cavity. The continuous line is the (it/a=0.48

+1.14/a. Inset: Order parameter map for a nematic filled cavity of
FIG. 6. Minimal interaction energgleft) and equilibrium posi- depth d>d.. The nematic order parameter varies betwe@n
tion Ryin (right) as functions of the radius of the cavitya. =Qpuik (White region$ and Q=0 (colored regions
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5.2 we consider the interaction energy along different directions.
In Fig. 9 we plot the interaction energy along lines parallel to
5.1 the wall (R/a=2.1,3.1,4.1,9.]1 as a function of the lateral
S distance from the cavity/a for a cavity withr/a=1.5 and
° 5 d/a=1.00. Note that the attraction is limited to a certain
§ angle that depends on the colloidal separaRo®utside that
£ 40 region, the colloid is repelled by the flat wall and by the
l:o : cavity corners. Indeed, a strong variation of the interaction
I i energy as the disk approaches the corners may be seen in
: Fig. 9.
The colloid will be trapped by an appropriately sized cav-
47 ity if, and only if, it is (driven) inside the cavity’s “cone” of
attraction.
FIG. 9. Reduced interaction energy along four lines parallel to V. CONCLUSIONS

the wall(R/a=2.1,3.1,4.1,9.1las a function of the lateral distance We studied the interaction of a colloidal disk, in a 2D
from the cavityx/a. The radius and depth of the cavity arfa  nematic, with a flat wall with strong homeotropic boundary
=1.5 andd/a=1.00, respectively. conditions and found that it is purely repulsive and decays at
long range a®™*. By sculpting the surface with a cavity that
One topological defect is inside the cavity, near the capis similar in size and shape to the colloid we found a robust
while the other is pinned near one of the corners. This brokekey-lock mechanism, capable of turning the repulsion into an
symmetry configuration is twofold degenerate. Along theattraction large enough to trap colloidal particles.
cavity’s neck the nematic director is almost constant and this This key-lock mechanism is clearly dependent on the ge-
configuration will be badly distorted by a colloidal disk. This ometry of both the colloid and the cavity and its effective-
results in a free energy barrier leading to a strong colloidan€ss for other colloidal shapes will be addressed in future
repulsion. The barrier will vanish for cavities that are wide WOrk- Another relevant question that is left open is the exis-
enough to allow a smooth deformation of the director fielgtence of a similar effect at softieformablg walls. This wil
when the colloidal particle is inserted. al!ow contact with recent results at NI interfaces where col_—
Simple dimensional arguments may be used to understag'dS Were found to be trapped through a mechanism that is
this configurational instability. For smooth deformations, thesomewhat more complex, since the bending of the interface

. o . results from the colloidal interactiorjd7].
elastic free energy of the nematic Is proporthnath_:b’r. By Lastly, we note that the key-lock mechanism has features
contrast, the free energy of a uniform nematic aligned alonge ,

o ) : miniscent of the process of wrapping colloids by a mem-
the cavity's neck, with two 1/2 defects placed symmetricallyp ane 20,27, It is Iiﬁely that the mgjpor?actors deteyrmining

at both ends, scales asq’K, the core energy of the defects. his wrapping process are most simply illustrated for the type
Thus, the latter is the equilibrium configuration for suffi- of hard structured walls considered in this work. However, a
ciently larged. However, as seen in the inset, at the instabil-getailed comparison of hard and soft surfaces requires further
ity a symmetry breaking transition also occurs and the lowegnalysis based on the LdG approach and/or effective Hamil-
defect is pinned near one corner. In order to ascertain thgpnian models, in order to asse@mong other thingsthe
validity of the simple dimensional arguments we haverole of thermal fluctuations.
checked numerically that the energy of the smooth deforma- We end with the remark that our results for the 2D key-
tion scales withd, while that of the broken symmetry con- lock mechanism are applicable to a particular 3D system,
figuration is constant. The critical depttlg/a were also cal- consisting of long rodlike colloids with their major axes par-
culated numerically and are plotted in Fig. 8 as a function ofallel to a planar surface. Methods to manipulate such systems
the cavity radiusr/a. At large r/a this exhibits the linear have already been developg®]. Three dimensional effects,
relation,d./a=0.48+1.14/a. such as the biaxiality at the defect cores, are sii2za] and

The results so far considered the interaction between cokhus the key-lock mechanism reported here should be valid
loidal disks and sculpted walls along the symmetry axis offor these 3D systems where the non-uniformity(égias)
the cavity(see Fig. 3. In the remaining part of this section two-dimensional.
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