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We consider the interaction between two-dimensional nematic colloids and planar or sculpted walls. The
elastic interaction between colloidal disks and flat walls, with homeotropic boundary conditions, is always
repulsive. These repulsions may be turned into strong attractions at structured or sculpted walls, with
cavities that match closely the shape and size of the colloids. This key-lock mechanism is analyzed in
detail for colloidal disks and spherocylindrical cavities of various length to depth ratios, by minimizing the
Landau–de Gennes free energy functional of the nematic orientational order parameter. We find that the
attractions occur only for walls with cavities within a small range of the colloidal size and a narrow range of
orientations with respect to the cavity’s symmetry axis.
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I. INTRODUCTION

In the last ten years, there has been continued interest in
colloidal dispersions in nematics and other liquid crystalline
phases(LCs) owing to their novel, complex behavior[1].
The behavior of spherical isotropic particles in a nematic
matrix depends upon(i) the elastic constants of the nematic,
(ii ) the size of the particle, and(iii ) the boundary conditions
at the particle and at the container, including the anchoring
energy of the nematogenic molecules and possibly additional
(generic) surface tension effects. All of these contributions
are temperature dependent and their combination leads to
complex anisotropic long-ranged colloidal interactions[2–4].
These were reported to lead to a variety of novel self-
organized colloidal structures, such as linear chains[5,6],
periodic lattices[7], anisotropic clusters[8], and cellular
structures[9] that are stabilized, in general, by topological
defects.

More recently, two-dimensional(2D) inverted nematic
emulsions were also studied and similar behavior has been
found [10–14]. In particular, Landau–de Gennes(LdG)
theory predicts that the stable configuration for a colloidal
disk, with strong homeotropic anchoring, is always a pair of
1/2 charge topological defects[15] and thus the long-range
interaction between 2D colloids is quadrupolar for any sized
particles[14].

The interactions between colloids and the nematic-
isotropic(NI) interface were also investigated[16,17]. These
include specific contributions from the liquid crystal matrix
due to distortion of the director field close to the particles
and/or the interface, and a generic contribution due to wet-
ting and surface tension effects. At equilibrium, a strong dis-
tortion of the planar interfacial region was observed, with the
interface bending around to wrap the colloid. The effective
colloid-interface interaction was found to be rather complex
and a simple scaling analysis for a flat interface was shown
to fail badly [17].

At the same time technological advances allowed the con-
trolled fabrication of micropatterned and structured surfaces,
on the nanometer to the micrometer scales[18]. The inter-

play between surface geometry and orientational order re-
quired to understand the phenomenology of LCs on sub-
strates patterned on these length scales is however largely
unexplored. In this article we embark on a systematic inves-
tigation of the effects of geometry and orientational order on
the interaction between colloids and solid surfaces. In par-
ticular, we investigate the interaction between 2D colloids
and hard surfaces, ranging from flat to structured on the col-
loidal scale. We study the interaction between one disk and
flat as well as structured walls, using the method of images
and numerical minimization the LdG free energy. For a
single cavity, sculpted on a flat surface, we find that the flat
wall repulsion may be turned into a rather strong attraction,
as a result of the interplay between geometry and orienta-
tional order. This effect occurs at cavities with sizes in the
colloidal range resembling the so-calledkey-lock mecha-
nism.

In Sec. II, we review briefly the Landau–de Gennes
theory and in Sec. III we present the results for the interac-
tion between one disk and a flat wall. In Sec. IV we consider
the interaction of colloidal disks with cavities sculpted on flat
walls. We investigate the effects of the size and shape of the
cavity and of the colloidal orientation with respect to the
cavity’s symmetry axis. Finally, in Sec. V we summarize our
results and make some concluding remarks.

II. LANDAU–DE GENNES FUNCTIONAL

In what follows we consider a two-dimensional nematic
liquid crystal. On average, the molecules are aligned along
one common direction described by the directorn and the
tensor order parameter is defined asQabsr d=Qsr d
3fnasr dnbsr d−dab /2g [19]. In the situations to be investi-
gated, the distances over which significant variations ofQab

occur are much larger than molecular dimensions. Thus den-
sity variations are neglected. The free energy density is then
written in terms of invariants ofQ and its derivatives and is
known as the Landau–de Gennes free energy,
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where we used the one elastic constant approximation. Tr
denotes the trace operation,V is the area of the 2D system,A
andC are bulk constants, andL is the elastic constant. Sta-
bility requires C.0. In the nematic phaseA.0 and the
equilibrium orientational order parameter isQbulk=Î2A/C.
For simplicity, we consider strong homeotropic(perpendicu-
lar) anchoring meaning that the order parameter at the wall
and disk boundary is fixed and equal toQbulk. The colloid is
modeled as a hard disk, and all other colloidal interactions
(van der Waals, electrostatic, etc.) are neglected. Thermal
fluctuations, also neglected within the Landau–de Gennes
description, are expected to be unimportant for the systems
considered here: hard surfaces at temperatures well below
the NI transition temperature.

We use finite elements with adaptive meshing, as de-
scribed in Ref.[13], to minimize the Landau–de Gennes free
energy functional. Indeed, the major difficulty in the numeri-
cal problem stems from the widely different length scales set
by the disk or the sculpted wall and the defects. A first tri-
angulation respecting the(predefined) geometrical bound-
aries is constructed. The tensor order parameterQabsr d is
given at the vertices of this mesh and linearly interpolated
within each triangle. The free energy is then minimized using
standard methods. The variation of the solution at each itera-
tion is used to generate a new adapted mesh. In the far field
Qabsr d varies slowly and the triangles are large. By contrast,
close to the defects the tensor order parameter varies rapidly
and the triangles are several orders of magnitude smaller. In
typical calculations convergence is obtained after two mesh
adaptations, corresponding to final meshes with 104 points,
spanning a region of 20a320a, and minimal mesh sizes of

10−4a, close to the defects. The corresponding free energy is
given with a relative accuracy of 10−4.

III. FLAT WALL

We start by considering the interaction of a colloidal disk,
of radiusa, with a flat wall. We assume strong homeotropic
boundary conditions at the wall and at the disk’s surface, and
take the far fieldn0 perpendicular to the wall. The order
parameter at the wall and at the disk’s surface is fixed and is
equal toQbulk.

The fixed homeotropic anchoring at the boundaries re-
duces the(long-range) flat disk-wall interaction to the inter-
action between two disks, studied in Ref.[14]. The latter was
obtained using an electromagnetic analogy[10] establishing
that, at large separations, each disk is accompanied by a pair
of defects and behaves as a quadrupole. This still applies to
the flat wall system with the result that the long-range disk-
wall interaction is repulsive and decays asR−4, whereR is
the distance between the center of the disk and the wall.
However, at short range, nonlinear effects come into play,
and the electromagnetic analogy is no longer valid. More-
over, in that region the equilibrium disk-disk interaction
spontaneously breaks the flat wall(mirror) symmetry [14]
and thus it is no longer useful in this problem. In this regime,
we resorted to numerical solutions.

In Fig. 1 we plot the reduced interaction energyF̄−F̄0 as

a function of the distanceR. F̄=F /K, whereK=2LQbulk is
the Frank elastic constant, andF0 is the Landau–de Gennes
free energy of the system without colloid. As noted above,
the long-range interaction is always repulsive and we find
that the repulsion increases as the colloid approaches the
wall. This increased short-range repulsion is associated with
the strong distortion of the nematic matrix between the(flat)
wall and the(curved) disk, due to the competition between
the fixed anchoring conditions at the wall and disk surfaces.
The distortion of the nematic matrix extends from the wall

FIG. 1. (Color online) Reduced interaction
energy as a function of the distanceR from the

center of the colloid, of radiusa, to the wall. F̄
=F /K, whereK=2LQbulk is the Frank elastic con-
stant, andF0 is the Landau–de Gennes free en-
ergy of the system without colloid. The inset il-
lustrates the order parameter maps at differentR.
(a) R/a=1.1; (b) R/a=2.0; (c) R/a=4.0. The
nematic order parameter varies betweenQ
=Qbulk (white regions) and Q=0 (colored
regions).
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up to the line joining the defects and under these circum-
stances the elastic free energy is minimized if the defects
move closer to the wall. As a result the pair of 1/2 defects
surrounding the disk are displaced with respect to their(sym-
metrical) equatorial position in the isolated disk. This effect
is illustrated in the inset of Fig. 1, exhibiting order parameter
maps at different disk-wall separations,R. In Fig. 2, we plot
the defects orientationdu with respect to their orientation in
isolated disks, as a function ofR (see inset for the notation).
In addition, the distance of the defects from the center of the
disk, rd/a, decreases at small disk-wall separations,R, as the
defects change their orientation.

IV. STRUCTURED WALL

The results of the preceding section indicate that a ho-
meotropic disk is repelled by a hard(homeotropic) wall since
the elastic deformation of the nematic matrix increases as the
colloid approaches the wall. This situation may be inverted if
the director field at the wall resembles the director field close
to an isolated disk. In the following we explore this mecha-
nism and determine the conditions under which it is strong
enough to overcome the flat wall repulsion.

We consider a sculpted cavity on an otherwise flat wall, as
shown in Fig. 3. The cavity is spherocylindrical of radiusr
and half-length or depthd. The corners are replaced by an
arc of circle with radiusa/4, to avoid large variations in the
director field, in the absence of the colloid. Strong homeo-
tropic boundary conditions are set at the wall and at the
colloidal surface. The far fieldn0 is again perpendicular to
the wall.

The image method can no longer be applied and analyti-
cal expressions for the long-range interaction between the
disk and the cavity are not available in this case. In addition,
the nonlinearities that come into play, as the colloid ap-
proaches the cavity, are more complex. The free energy is
minimized numerically as before, using finite elements with
adaptive meshing[13].

We start by considering a very shallow cavity, withd/a
=0.01. In Fig. 4 we show the disk-wall interaction as a func-

tion of the separationR/a for increasing values of the cavi-
ty’s radius. If the cavity is sufficiently narrowsr /a,0.25d
the colloid-wall interaction is very similar to the interaction
with the flat wall. As the radius of the cavity increases, an
attraction with a well defined minimum eventually occurs.
The minimum is inside the cavity if the width is larger than
the colloidal radius,r /a.1.

However, if we increase the radius of the cavity well be-
yond the colloidal size, the attraction becomes very weak.
When the radius of the cavity is much larger thana, the
interaction between the disk and the structured wall ap-
proaches that of the flat wall.

The disk-wall attraction that occurs when the radius of the
cavity is of the order of the particle radius is easily under-
stood in terms of the nematic configurations of Fig. 5, where
we plot the nematic order parameter maps and the director
orientation, for a cavity withr /a=1.1 andd/a=0.01, and
different colloidal separationsR. The shape of the cavity is
complementary to that of the disk. The distortion due to the
homeotropic anchoring at all surfaces is clearly minimized
when the particle fills the cavity. In fact, as the colloid ap-
proaches the cavity, the two 1/2 defects move towards the
corners and merge with the distorted region of the nematic
matrix in the absence of the colloid[see Fig. 5(a)]. Due to

FIG. 2. Defect distancerd from the center of the disk(continu-
ous line) and defects orientationdu (dash-dotted line), with respect
to their orientation in isolated disks, as a function ofR.

FIG. 3. Structured wall: geometry and notation.

FIG. 4. Reduced interaction energy as a function of the distance
R of the center of the colloid to the midpoint of the cavity’s en-
trance for several widthssr /a=0.25,0.50,0.75,1.00,1.25d. The
depth isd/a=0.01.
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the strong distortion of the nematic matrix at the corners of
the isolated cavity, the tensor order parameter decreases in
this region, even if we keepQ=Qbulk fixed at the surface.
Different surface interactions will lead to different director
configurations but for simplicity we restrict the study to
strong anchoring conditions.

In Fig. 6 we plot the minimal interaction energyF̄min

−F̄0 (left) and the corresponding disk-wall separationRmin/a
(right) as a function of the radius of the cavityr /a. For small
r /a, the disk-wall interaction is repulsive, and the minimal
free energy occurs when the colloidal particle is far from the
wall, R→`. The disk-wall interaction becomes attractive at
finite Rmin/a (corresponding to a critical cavity radiusrc/a
.0.4). Beyond this point, the minimal free energy decreases
rapidly and reaches its lowest value for a cavity withrm/a
.1.1. The strongest disk-wall attraction occurs for this ge-
ometry, and is illustrated in Fig. 5.

In the following we show that the disk-wall attraction,
discussed for shallow cavities, may be enhanced by increas-
ing the cavity depthd. In Fig. 7 we plot the reduced interac-
tion energy as a function of the separationR for cavities with
different depthsd. The cavity radius isr /a=1.5 and r /a
=3.0, on the left and right of the figure, respectively. Increas-
ing d reduces the equilibrium interaction energy by pulling
the disk deeper into the cavity. The nematic distortion is
decreased and the defects are further localized at the corners
leading to a significant reduction in the elastic free energy.

For cavities withr /a=3.0 the analysis revealed the existence
of a second(metastable) solution where the defects remain
attached to the colloid. This is illustrated in Fig. 7(right)
where we plot the energy of both configurations for two dif-
ferent cavities,d/a=0.01 (full lines) andd/a=1.00 (dashed
lines). The lines in bold correspond to the minimal energy
branches.

When r ,a, the disk-wall attraction is enhanced as the
depthd increases. A similar effect occurs for wider cavities.
However, as was pointed out before, the attraction becomes
weaker, and eventually turns into a repulsion as the wall
becomes flatter.

The enhancement of the disk-wall attraction occurs only
for a limited range of depths. At a certain depth the nematic
configuration changes abruptly. In fact, due to the strong ho-
meotropic boundary conditions, there is a critical depthdc
beyond which the stable nematic configuration of the empty
cavity exhibits two topological defects(see inset of Fig. 8).

FIG. 8. (Color online) Critical depthdc as a function of the
radius of the cavity. The continuous line is the fitdc/a=0.48
+1.14r /a. Inset: Order parameter map for a nematic filled cavity of
depth d@dc. The nematic order parameter varies betweenQ
=Qbulk (white regions) andQ=0 (colored regions).

FIG. 5. (Color online) Order parameter maps for a cavity with
r /a=1.1 andd/a=0.01, and different colloidal separationsR. (a)
R/a=3.0; (b) R/a=0.6; (c) R/a=−0.32. The nematic order param-
eter varies betweenQ=Qbulk (white regions) and Q=0 (colored
regions).

FIG. 6. Minimal interaction energy(left) and equilibrium posi-
tion Rmin (right) as functions of the radius of the cavityr /a.

FIG. 7. Left: interaction energy as a function of the separationR
for several cavitiessd/a=0.01,0.10,0.50,1.00d with radius r /a
=1.5. Right: interaction energy as a function of the separationR for
several depthssd/a=0.01,1.00d. The radius of the cavity isr /a
=3.0. The lines in bold correspond to the minimal energy configu-
rations. Thinner lines correspond to metastable solutions.
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One topological defect is inside the cavity, near the cap,
while the other is pinned near one of the corners. This broken
symmetry configuration is twofold degenerate. Along the
cavity’s neck the nematic director is almost constant and this
configuration will be badly distorted by a colloidal disk. This
results in a free energy barrier leading to a strong colloidal
repulsion. The barrier will vanish for cavities that are wide
enough to allow a smooth deformation of the director field
when the colloidal particle is inserted.

Simple dimensional arguments may be used to understand
this configurational instability. For smooth deformations, the
elastic free energy of the nematic is proportional toKd/ r. By
contrast, the free energy of a uniform nematic aligned along
the cavity’s neck, with two 1/2 defects placed symmetrically
at both ends, scales as,pq2K, the core energy of the defects.
Thus, the latter is the equilibrium configuration for suffi-
ciently larged. However, as seen in the inset, at the instabil-
ity a symmetry breaking transition also occurs and the lower
defect is pinned near one corner. In order to ascertain the
validity of the simple dimensional arguments we have
checked numerically that the energy of the smooth deforma-
tion scales withd, while that of the broken symmetry con-
figuration is constant. The critical depthsdc/a were also cal-
culated numerically and are plotted in Fig. 8 as a function of
the cavity radiusr /a. At large r /a this exhibits the linear
relation,dc/a=0.48+1.14r /a.

The results so far considered the interaction between col-
loidal disks and sculpted walls along the symmetry axis of
the cavity(see Fig. 3). In the remaining part of this section

we consider the interaction energy along different directions.
In Fig. 9 we plot the interaction energy along lines parallel to
the wall sR/a=2.1,3.1,4.1,9.1d, as a function of the lateral
distance from the cavityx/a for a cavity with r /a=1.5 and
d/a=1.00. Note that the attraction is limited to a certain
angle that depends on the colloidal separationR. Outside that
region, the colloid is repelled by the flat wall and by the
cavity corners. Indeed, a strong variation of the interaction
energy as the disk approaches the corners may be seen in
Fig. 9.

The colloid will be trapped by an appropriately sized cav-
ity if, and only if, it is (driven) inside the cavity’s “cone” of
attraction.

V. CONCLUSIONS

We studied the interaction of a colloidal disk, in a 2D
nematic, with a flat wall with strong homeotropic boundary
conditions and found that it is purely repulsive and decays at
long range asR−4. By sculpting the surface with a cavity that
is similar in size and shape to the colloid we found a robust
key-lock mechanism, capable of turning the repulsion into an
attraction large enough to trap colloidal particles.

This key-lock mechanism is clearly dependent on the ge-
ometry of both the colloid and the cavity and its effective-
ness for other colloidal shapes will be addressed in future
work. Another relevant question that is left open is the exis-
tence of a similar effect at soft(deformable) walls. This will
allow contact with recent results at NI interfaces where col-
loids were found to be trapped through a mechanism that is
somewhat more complex, since the bending of the interface
results from the colloidal interactions[17].

Lastly, we note that the key-lock mechanism has features
reminiscent of the process of wrapping colloids by a mem-
brane[20,21]. It is likely that the major factors determining
this wrapping process are most simply illustrated for the type
of hard structured walls considered in this work. However, a
detailed comparison of hard and soft surfaces requires further
analysis based on the LdG approach and/or effective Hamil-
tonian models, in order to assess(among other things) the
role of thermal fluctuations.

We end with the remark that our results for the 2D key-
lock mechanism are applicable to a particular 3D system,
consisting of long rodlike colloids with their major axes par-
allel to a planar surface. Methods to manipulate such systems
have already been developed[22]. Three dimensional effects,
such as the biaxiality at the defect cores, are small[23] and
thus the key-lock mechanism reported here should be valid
for these 3D systems where the non-uniformity is(quasi)
two-dimensional.
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